Detection of intratumoral calcification in oligodendrogliomas by susceptibility-weighted MR imaging.
نویسندگان
چکیده
BACKGROUND AND PURPOSE SWI is a unique pulse sequence sensitive to both hemorrhage and calcification. Our aim was to retrospectively assess the ability of SWI to detect intratumoral calcification in ODs compared with conventional MR imaging. MATERIALS AND METHODS Using CT as criterion standard, the MR imaging findings from 71 patients (33 males, 38 females; mean age, 42.5 years) with pathologically proved OD were retrospectively evaluated. We classified the MR imaging data into SWI data (MRSWI) and traditional pulse sequences (MRnoSWI). The sensitivity and specificity of the MRnoSWI (n = 71) were compared with that of the MRSWI (n = 13) independently and also for matched-paired data (n = 13). The Fisher exact test was applied to the matched-pair data for statistical evaluation. RESULTS For paired data of MRSWI and MRnoSWI (n = 13), there was significantly increased sensitivity of MRSWI (86%) for the detection of intratumoral calcification in OD compared with the MRnoSWI (14.3%) (P = .015, Fisher exact test) by using CT as the criterion standard. The overall accuracy of MRSWI for the paired data was also significantly greater (P = .048). The specificities were not significantly different (P = .773). The sensitivity of MRSWI (n = 13) was 86%, and for MRnoSWI (n = 71), it was 33.3%. Specificity of MRSWI was 83%, and for MRnoSWI, it was 95%. CONCLUSIONS SWI is better able to detect calcification in ODs than conventional MR imaging pulse sequences.
منابع مشابه
SWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملAssessment of hemorrhage in pituitary macroadenoma by T2*-weighted gradient-echo MR imaging.
BACKGROUND AND PURPOSE Intratumoral hemorrhage occurs frequently in pituitary macroadenoma and manifests as pituitary apoplexy and recent or old silent hemorrhage. T2*-weighted gradient-echo (GE) MR imaging is the most sensitive sequence for the detection of acute and old intracranial hemorrhage. T2*-weighted GE MR imaging was used to investigate intratumoral hemorrhage in pituitary macroadenom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2012